噪声背景下提取调制信息的改进奇异值分解技术  被引量:2

An Improved Method of Detecting Modulated Gear Fault Characteristic Based on Singularity Value Decomposition

在线阅读下载全文

作  者:吴勇军[1] 陈恩利[1] 申永军[1] 

机构地区:[1]石家庄铁道学院机械工程分院,河北石家庄050043

出  处:《石家庄铁道学院学报》2007年第4期24-27,80,共5页Journal of Shijiazhuang Railway Institute

基  金:国家自然科学基金(10602038);河北省自然科学基金(E2006000383)

摘  要:在介绍现有奇异值分离技术基本原理及其在故障诊断中的应用的基础上,研究了利用信号时间序列重构的吸引子轨迹矩阵奇异值分布特征与信号特征的关系,引入自相关函数定量计算重构矩阵的延时步长,改进了现有算法,使得吸引子轨迹矩阵的重构更加合理。研究表明该方法能在强噪声背景下提取出所需的调制信号,并成功用于齿轮箱调制故障信号的提取。In this paper, the fundamental principle of singularity value decomposition and its application in fault diagnosis are introduced. Based on the relations between the time series and the singular value distribution of the Singularity Value Decomposition about track matrix of attractor reconstructed by time series, the autocorrelation function is introduced, which improves the method in existence. The improved method is more reasonable in track matrix of attractor reconstructed and more exact in signal detecting. The study indicates that the improved method is successful in detecting the modulated fault signals in the gearbox even in high noise background, which provides a new idea on gear fault diagnosis.

关 键 词:齿轮箱 故障诊断 调制信号 奇异值分解 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象