机构地区:[1]Department of Anesthesiology, the SecondAffiliatedHospital, School of Medicine, Zhejiang University, Hangzhou 310009, China [2]Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
出 处:《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》2008年第2期100-108,共9页浙江大学学报(英文版)B辑(生物医学与生物技术)
基 金:Project supported by the National Natural Science Foundation ofChina (No. 30772090);the Natural Science Foundation of ZhejiangProvince (No. Y204141);the Foundation from Science and Technology Department of Zhejiang Province (No. 2007R10034);theFoundation from Personnel Department of Zhejiang Province (NoJ20050046);the Foundation from Health Department of ZhejiangProvince (No. 2007QN007), China
摘 要:Background: Sevoflurane and propofol are effective cardioprotective anaesthetic agents, though the cardioprotection of propofol has not been shown in humans. Their roles and underlying mechanisms in anesthetic postconditioning are unclear. Mitochondrial permeability transition pore (MPTP) opening is a major cause of ischemia-reperfusion injury. Here we investigated sevoflurane- and propofol-induced postconditioning and their relationship with MPTP. Methods: Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. During the first 15 min of reperfusion, hearts were treated with either control buffer (CTRL group) or buffer containing 20 μmol/L atractyloside (ATR group), 3% (v/v) sevoflurane (SPC group), 50 μmol/L propofol (PPC group), or the combination of atractyloside with respective anesthetics (SPC+ATR and PPC+ATR groups). Infarct size was determined by dividing the total necrotic area of the left ventricle by the total left ventricular slice area (percent necrotic area). Results: Hearts treated with sevoflurane or propofol showed significantly better recovery of coronary flow, end-diastolic pressures, left ventricular developed pressure and derivatives compared with controls. Sevoflurane resulted in more protective alteration of hemodynamics at most time point of reperfusion than propofol. These improvements were paralleled with the reduction of lactate dehydrogenase release and the decrease of infarct size (SPC vs CTRL: (17.48±2.70)% vs (48.47±6.03)%, P<0.05; PPC vs CTRL: (35.60±2.10)% vs (48.47±6.03)%, P<0.05). SPC group had less infarct size than PPC group (SPC vs PPC: (17.48±2.70)% vs (35.60±2.10)%, P<0.05). Atractyloside coadministration attenuated or completely blocked the cardioprotective effect of postconditioning of sevoflurane and propofol. Conclusion: Postconditioning of sevoflurane and propofol has cardio-protective effect against ischemia-reperfusion injury of heart, which is associated with inhibition of MPTP opening. Compared to propofol, sevofluranBackground: Sevoflurane and propofol are effective cardioprotective anaesthetic agents, though the cardioprotection of propofol has not been shown in humans. Their roles and underlying mechanisms in anesthetic postconditioning are unclear. Mitochondrial permeability transition pore (MPTP) opening is a major cause of ischemia-reperfusion injury. Here we investigated sevoflurane- and propofol-induced postconditioning and their relationship with MPTP. Methods: Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. During the first 15 min of reperfusion, hearts were treated with either control buffer (CTRL group) or buffer containing 20 μmol/L atractyloside (ATR group), 3% (v/v) sevoflurane (SPC group), 50 μmol/L propofol (PPC group), or the combination of atractyloside with respective anesthetics (SPC+ATR and PPC+ATR groups). Infarct size was determined by dividing the total necrotic area of the left ventricle by the total left ventricular slice area (percent necrotic area). Results: Hearts treated with sevoflurane or propofol showed significantly better recovery of coronary flow, end-diastolic pressures, left ventricular developed pressure and derivatives compared with controls. Sevoflurane resulted in more protective alteration of hemodynamics at most time point of reperfusion than propofol. These improvements were paralleled with the reduction of lactate dehydrogenase release and the decrease of infarct size (SPC vs CTRL: (17.48±2.70)% vs (48.47±6.03)%, P〈0.05; PPC vs CTRL: (35.60±2.10)% vs (48.47±6.03)%,P〈0.05). SPC group had less infarct size than PPC group (SPC vs PPC: ( 17.48±2.70)% vs (35.60±2.10)%,P〈0.05). Atractyloside coadministration attenuated or completely blocked the cardioprotective effect of postconditioning of sevoflurane and propofol. Conclusion: Postconditioning of sevoflurane and propofol has cardio-protective effect against ischemia-reperfusion injury of heart
关 键 词:SEVOFLURANE PROPOFOL POSTCONDITIONING Reperfusion injury Mitochondrial permeability transition pore (MPTP)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...