检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《统计与决策》2008年第2期22-24,共3页Statistics & Decision
基 金:国家自然科学基金(NSFC70771038);教育部人文社会科学规划(06JA910001);教育部新世纪优秀人才支持计划(NECT050704)
摘 要:AR-GJR-GARCH模型是一种误差项为GJR-GARCH形式的自回归模型,该模型的贝叶斯推断很难得到其具体形式的条件后验密度。文章利用Metropolis-Hastings抽样方法对模型参数的条件后验分布进行MCMC模拟,然后运用模拟得到的样本对模型的参数进行贝叶斯估计。该方法解决了参数估计过程中的高维数值积分问题。模拟结果表明了该模型在中国股市波动性分析过程中的直观性和有效性。
关 键 词:AR-GJR-GARCH模型 贝叶斯推断 MCMC方法Metropolis—Hastings抽样
分 类 号:O212.8[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52