检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王连华[1] 赵跃宇[1] 胡建华[1] 金怡新[1]
出 处:《计算力学学报》2008年第1期104-111,共8页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(1027204110502020)资助项目
摘 要:本研究的第一部分已经推导了悬索在第一阶面内对称模态主共振和第三阶面内对称模态主共振下的平均方程,其中考虑了这两阶模态之间1∶3内共振。本文对平均方程的稳态解、周期解以及混沌解进行了研究。利用Newton-Naphson方法和拟弧长的延拓算法确定了主共振情况下的幅频响应曲线,通过利用Jacobian矩阵的特征值判断幅频响应曲线中解的稳定性。在这些幅频响应曲线中,都存在超临界Hopf分叉,导致平均方程的周期解。以这些超临界Hopf分叉为起点,利用打靶法和拟弧长的延拓算法确定了两种主共振情况下的周期解分支,同时通过利用Floquet理论判断这些周期解的稳定性。然后利用数值结果研究了两种主共振情况下的周期解经过倍周期分叉通向混沌的过程。最后利用Runge-Kutta法研究了悬索两自由度离散模型的非线性响应。Two sets of averaging equations of the cases of primary resonance of the first or third symmetric mode of the suspended cable are derived in this study, where the one vs three internal resonance is considered. The equilibrium solution, the periodic solution and chaotic solution of averaging equations are examined in this paper. The Newton-Naphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency-response curves of the two cases of primary resonances, and the equilibrium solution's stability is determine by examining the eigenvalues of the corresponding Jacobian matrix. The supercritical Hopf bifurcations are found in the frequency-response curves. Choosing these bifurcations as the initial points, the periodic solution branches for the two cases of primary resonance are obtained with the help of the shooting method and the pseudo-arclength path-following algorithm. Moreover, the Floquet theory is used to determine the periodic solution's stability. The numerical simulation is used to stud response of the two- Y d the period-doubling bifurcations scenario leading to chaos. At last, the non-linear egree-of-freedom (DOF) model is investigated by using the Runge-Kutta algorithm.
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.21.218