检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳化工学院信息工程学院,辽宁沈阳110142
出 处:《计算机仿真》2008年第2期80-82,共3页Computer Simulation
摘 要:青霉素发酵过程是一种具有非线性、时变性的复杂生化反应系统,由于一些生物参数在线检测困难,许多生化过程的代谢途径尚不明确,难以建立精确数学模型。而神经网络具有非线性、多变量、自学习、并行处理等特点,用于非线性系统的建模具有无可比拟的优势。因此,以青霉素发酵过程生化机理模型产生的数据为样本,训练RBF神经网络,建立了基于RBF神经网络的发酵过程模型。该模型可用于发酵过程中状态变量的估算与预测,并且可估计底物、产物、菌体浓度的变化趋势,对实际工作具有指导意义。The penicillin fermentation process is a complex biochemical system with time varying, nonlinear and uncertainty feature. It is difficult to obtain an accurate mathematics model of the penicillin fermentation process, since some of the life-form parameters can not be measured online and the metabolizing approaches of many biochemical process are not well known. Neural networks have many features such as nonlinear, multivariable and self-learning ability, so they are effective in modeling of nonlinear system. The model of the penicillin fermentation process has been established by using data created by the penicillin fermentation process mechanism model to train neural network, and simulations were made to prove this fermentation model. Using this model, the tendency of state change of the fermentation process can be known in advance. This is very useful in practice.
关 键 词:非线性建模 径向基神经网络 青霉素 仿真 发酵过程
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3