检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈焕艮[1]
机构地区:[1]湖南师范大学数学与计箅机科学学院,长沙410081
出 处:《数学年刊(A辑)》2008年第1期83-90,共8页Chinese Annals of Mathematics
摘 要:称环R具有稳定秩1,如果对任意的a,b∈R,aR+bR=R,则存在y∈R,使得a+by∈U(R).证明了置换环有稳定秩1当且仅当对任意的幂等元e∈R,如果aR+b(eR)=R,则存在u,u∈R,使得au+b(ev)=0且(eR)u+(eR)(ev)=eR当且仅当对任意的幂等元e∈R,如果aR+b(eR)=R,则存在u,v∈R,使得as+b(et)=0当且仅当存在z∈eR,使s=uz,t=uz,从而给出这类置换环新的元素刻画.进一步地,证明了如果R是稳定秩1的置换环,对任意的正则元a∈R,2a总可以表示成两个单位的和.最后对具有降链本原分式的置换环R,证明了对任意的a∈R,2a总可以表示成两个单位的和.A ring R has stable range one provided that aR + bR = R with a, b ∈ R implies that there exists a y ∈ R such that a + by ∈U(R). This paper proves an exchange ring R has stable range one if and only if for any idempotent e ∈ R, aR + b(eR) = R implies that there exist u,v ∈ R such that au + b(ev) = 0 and (eR)u + (eR)(ev) = eR if and only if for any idempotent e ∈ R, aR + b(eR) = R implies that there exist u, v ∈ R such that as + b(et) = 0 if s = uz and t = vz for a z ∈ eR. These give new element-wise characterizations of such exchange rings. Furthermore, the author proves that for any regular a ∈ R, 2a is the sum of two units, where R is an exchange ring having stable range one. Finally, it is proved that for any a ∈ R, 2a is the sum of two units, where R is an exchange ring with artinian primitive factors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7