检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张江[1] 王年[1] 梁栋[1] 唐俊[1] 周梅菊[1]
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039
出 处:《中国科学技术大学学报》2008年第3期247-251,共5页JUSTC
基 金:国家自然科学基金(10601001;60772121);安徽省自然科学基金(050460102;070412065);安徽省教育厅自然科学基金(2006KJ030B)
摘 要:提出了一种非负矩阵分解(non-negative matrix factorization,NMF)和邻接谱相结合的图像分类方法.该方法首先利用图像中的特征点构造邻接矩阵,然后使用邻接谱作为非负矩阵分解迭代规则的初始值,并将经过非负矩阵分解得到的基向量作为图像的分类样本,最后采用概率神经网络(probabilistic neural network,PNN)分类器对图像进行分类.模拟实验和真实实验的比较表明,该方法是可行和有效的,并且进一步提高了图像分类的准确率和稳定性.Combined non-negative matrix factorization (NMF) with adjacency spectra, a new method of image classification was proposed to extract characteristic information of an image. Firstly, the adjacency matrix was constructed by the feature points of the image. Secondly, the initial value of NMF iterative was evaluated by means of adjacency matrix, and then the samples of image classification were obtained through basis vectors of NMF. Finally, image classification was performed by adopting probabilistic neural networks (PNN) classifier. Experimental results of synthetic data and real images show that the method not only has feasibility and validity, but also further improves recognition rate and stability of image classification.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112