检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学数学与信息科学学院,广西南宁530004
出 处:《广西民族大学学报(自然科学版)》2008年第1期45-49,共5页Journal of Guangxi Minzu University :Natural Science Edition
基 金:国家自然科学基金项目(10161001);广西自然科学基金项目(0542044);广西研究生教育创新计划资助项目(2007105930701M33)
摘 要:完整解决了广义四元数群Q4pm(p为奇素数,m为正整数)的连通4度及5度无向Cayley图的CI性、正规性和弧传递性.(1)关于CI性,证明广义四元数群Q4pm都是弱5-CI的;(2)关于正规性和弧传递性,证明广义四元数群Q4pm的连通4度Cayley图在同构意义下只有两类图,其中一类正规不弧传递,另一类不正规但弧传递;而广义四元数群Q4pm的连通5度Cayley图在同构意义下也只有两类图,其中一类正规,另一类不正规,而且两类图都非弧传递.This paper perfectly resolves the CI property, normality and arc-transitive property of connected Cayley graphs of valencies 4 and 5 on generalized quaternion groups Q4p^m(p is odd prime, m is positive integer). (1) About CI property, we prove that generalized quaternion groups Q4p^m are weak 5-CI groups; (2) About normality and arc-transitive property, we prove that the connected Cayley graphs of valency 4 on generalized quaternion groups Q4p^m have only two classes on the base of isomorphism, one is normal and non -arc-transitive, the other is non-normal bur arc-transitive; and the connected Cayley graphs of valency 5 on generalized quaternion groups Q4p^m have only two classes on the base of isomorphism too, one is normal, the other is non-normal, and these two classes of graphs are non- arc- transitive.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222