两类有限单群的刻划  

The Description of two Categories of Finite Simple Group

在线阅读下载全文

作  者:伍军[1] 于萍[2] 

机构地区:[1]新疆师范大学初等教育学院,新疆乌鲁木齐830013 [2]西安文理学院,陕西西安710065

出  处:《新疆师范大学学报(自然科学版)》2008年第2期49-51,共3页Journal of Xinjiang Normal University(Natural Sciences Edition)

摘  要:文[1]中提出了仅用群的"极大子群阶之集"来刻划有限复阶单群的猜想:"设G是有限群,M是有限复阶单群,则G■M"当且仅当πs(G)=πs(M).这里πs(G)表示G的极大子群阶之集。"并证明了这个猜想对M为阶小于106的复阶单群是成立的。这里对两类有限单群Suzuki无穷系列单群与Mathieu群Mi(i=11,12,22,23,24)证明上述猜想是正确的,即用群的"极大子群阶之集"来刻划两类有限单群。Abstract:In the first reference, the author conjectures to depict the finite compound step simple group with the set of maximal subgroup step: if G is a limited group and M is a finite compound step simple group, so G≌M, if and only if , ∏s (G)=∏s(M), here∏s (G) refersto the set of maximal subgroup step. The author demonstrates this conjecture is tenable to the compound step simple groups 〈10^6 with M as their step. The proof of the two finite simple groups Suzuki infinite series simple group and Mathieu group (M1, (i=11,12,22, 23,24))shows that the above conjecture is correct, when depicting two categories of finite simple group with the set of maximal subgroup step.

关 键 词:有限单群 极大子群 极大正规子群. 

分 类 号:O156.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象