检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《合肥工业大学学报(自然科学版)》2008年第5期815-816,共2页Journal of Hefei University of Technology:Natural Science
摘 要:Gauss-Lobatto积分公式对次数不超过2n-1次的多项式是准确地成立的。最近,有人以积分上下限作为额外的变元来进一步极小化公式误差的方法以改进这个公式,并给出了计算直到2n+1次单项式的数值例子,但是既没有分析误差,又没有对积分区间的长度加以限制;文章中给出了这种改进的一个误差上界,此误差上界随着积分区间长度趋向零而减小到零,说明他们的改进实际上是不恰当的。It is well known that the Gauss-Lobatto quadrature rule is exact for polynomials of degree at most 2n-1. Recently some researchers improved such a quadrature and further minimized the error by means of using integral bounds as additional variables, and offered some numerical examples for monomials of degree up to 2n+1, but neither analyzed the error bounds nor restricted the length of the integral interval. In this paper, an upper error bound for such improvements is given. Such an error bound vanishes as the length of the integral interval approaches zero, which shows that their im- provement is actually improper.
关 键 词:Gauss-Lobatto积分 求积公式 误差分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.76