具有Cauchy-Ventcel边界条件的有界域中亚临界半线性波方程的稳定与控制  

Stabilization and Control for the Subcritical Semilinear Wave Equation in a Bounded Domain With a Cauchy-Ventcel Boundary Conditions

在线阅读下载全文

作  者:A·卡努里 N·麦希迪 海治(译) 张禄坤(校) 

机构地区:[1]贝加亚大学应用数学实验室,阿尔及利亚

出  处:《应用数学和力学》2008年第6期713-725,共13页Applied Mathematics and Mechanics

摘  要:分析RN的有界域中半线性波方程解的指数衰减特性,有界域具有Cauchy-Ventcel型边界条件,并且球体外部作用着阻尼项.在对非线性作出适当又自然的假设后,倘若非线性在无穷大处为亚临界时,有限能量解的指数衰减性满足局部一致性.粗略地说,亚临界性意味着,在无穷大处非线性增长率次数不大于5.B.Dehman、G.Lebeau和E.Zuazua得到了R3和RN中的经典能量(用于估计局限于球体外部以能量形式表示的解的总能量)不等式和Strichartz估计的结果,使得研究RN有界域(域内及其边界上是亚临界非线性,边界为Cauchy-Ventcel型连续)中半线性波方程的稳定性与可控性成为可能.The exponential decay property of solutions of the semilinear wave equation in bounded domain of R^N ( N is equals or greater than 1 ) with a damping term which is effective on the exterior of a ball and with boundary conditions of Cauchy-Ventcel type was analyzed. Under suitable and natural assumptions on the nonlinearity, it was proved that the exponential decay holds locally uniformly for finite energy solutions that provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power is less than 5. The results obtained in R^3 and R^N(N equals to or greater than 1) by B. Dehman, G. Lebeau and E.Zuazua on the inequalities of the classical energy ( which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball) and on Strichartz's estimates,allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of R^N( N equals to or greater than 1 ) with a subcritical nonlinearity on the domain and its boundary and with conditions on the boundary of Cauchy-Ventcel type.

关 键 词:稳定性 精确控制性 有限问题 半线性 亚临界 偏微分方程 Cauchy-Ventcel 

分 类 号:O175.29[理学—数学] O175.4[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象