检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆陶荣[1] 朱林户[1] 李德芳[2] 柳宏杰[3] 夏文俊[1]
机构地区:[1]空军工程大学理学院 [2]西安电子科技大学机电工程学院,陕西西安710071 [3]西安电子科技大学软件学院,陕西西安710071
出 处:《西安电子科技大学学报》2008年第3期536-541,共6页Journal of Xidian University
基 金:国家自然科学基金资助(60573040)
摘 要:将集群智能思想引入粒子滤波,提出一种新颖的基于人工鱼群算法的粒子滤波器.该算法利用人工鱼群算法中觅食行为和聚群行为的交替,使得先验粒子不断向高似然域移动,从而改善粒子分布,提高估计精度.此外,利用Kullback信息描述聚群行为产生的粒子分布与似然分布的差别,通过迭代发现Kullback信息是递减的,从而证明该算法是合理的.仿真实验证明,这种算法是一种有效的粒子滤波算法,其滤波性能优于扩展卡尔曼滤波和常规粒子滤波.By bringing the thought of swarm intelligence into particle filtering, a novel particle filter based on the artificial fish school algorithm is proposed. This algorithm makes prior particles move towards the high likelihood region by use of the alternation of behaviors of preying and swarming in the artificial fish school algorithm. So particle distribution and filtering accuracy are improved. Moreover, the difference between the particle distribution produced by behavior of swarming and the likelihood distribution is described by Kullback information. Kullback information decreases with the increasing iteration degree, which proves that this algorithm is rational. Finally, simulation results show that this swarm intelligence algorithm for particle filtering is effective, and has a better filtering performance than the EKF and the common PF.
关 键 词:粒子滤波 集群智能 人工鱼群算法 Kullback信息
分 类 号:TN911[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117