检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西民族大学数学与计算机科学学院,南宁530006
出 处:《数值计算与计算机应用》2008年第2期146-152,共7页Journal on Numerical Methods and Computer Applications
基 金:广西自然科学基金(0575029;0639008);广西研究生教育创新计划(2006106080701M10);广西民族大学研究生教育创新计划(GXUN-CHX0756)资助项目.
摘 要:对一维抛物型方程初边值问题的求解,以往已经有一些数值解法,它们或者无条件稳定但精度不高,或者精度高但仅为条件稳定,且稳定性条件严格.另外,以往的差分格式在处理第二、第三类边界条件问题时,对带导数边界条件都是进行简单的差分逼近,影响了数值解的精度.因此构造一个无条件稳定且对各类边值问题都具有良好精度的数值方法具有重要意义.为此,基于子域精细积分思想,结合三次样条函数,提出了求解一维抛物型方程初边值问题含参数的样条子域精细积分格式.该格式为绝对稳定且精度很高.由于三次样条函数的采用,避免了通常有限差分法中处理带导数边界条件时产生的逼近误差,大大提高了求解第二、三类边界条件问题时的精度.There are some numerical methods to solve the one-almenstonaL lnltlal-Doun(lary VaLU~ problem of parabolic equations. They are either unconditionally stable but not very accurate, either accurate but conditionally stable. Especially, when problems subject to the second and the third boundary conditions are considered, the approximation by using the simple difference scheme only to the bounday conditions with derivatives leads to the loss of accuracy. Hence, it is significant to construct an a numerical method which is not only unconditionally stable but also accurate to deal with various boundaey conditions. Based on the sub-domain precise integration method and the cubic spline function, a new method, called the spline sub-domain precise integration (SSPI) scheme containing a parameter for the one-dimensional initial-boundary value problem of parabolic equations is presented. Because of the application of the cubic spline function, the error arosed in classical difference schemes to approximate boundary conditions with derevitives is avoided and the numerical accuracy to solve the problem with the second and the third boundary conditions is greatly improved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80