Runge-Kutta方法用于非线性方程求根  被引量:4

Runge-Kutta Methods′ Application in Solving Foots of Nonliner Equation

在线阅读下载全文

作  者:王霞[1] 赵玲玲[1] 

机构地区:[1]郑州轻工业学院数学与信息科学系,郑州450002

出  处:《数学的实践与认识》2008年第16期134-139,共6页Mathematics in Practice and Theory

基  金:国家自然科学基金(10701066);河南省教育厅自然科学基金(2008A110022)

摘  要:将Runge-Kutta方法用于非线性方程求根问题,给出二阶,三阶和四阶对应的三个新的方程求根公式,证明了它们至少三次收敛到单根,线性收敛到重根.文末给出数值试验,且与其它已知求根公式做了比较.结果表明此方法具有较好的优越性,它们丰富了非线性方程求根的方法,在理论上和应用上都有一定的价值.Runge-Kutta methods are used to solve the roots of nonliner equation. Three new solving root schemes are gived which are of second order, third order and fourth order of Runge-Kutta methods. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known variant Newton's methods. The results show that the proposed methods have some more advantages than the others. They enrich the methods to find the roots of non-linear equation and have great importance in both theory and application.

关 键 词:Runge—Kutta方法 牛顿方法 非线性方程 收敛阶 数值试验 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象