多层前向网络的动态结构设计方法及其在回弹预测中的应用  被引量:1

Dynamic Structure Design Method of Multilayer Feedforward Network and Its Application in Springback Prediction

在线阅读下载全文

作  者:韩利芬[1] 李光耀[2] 韩旭[2] 王卫平[3] 冯剑军[1] 

机构地区:[1]湘潭大学机械工程学院,湘潭411105 [2]湖南大学现代车身技术教育部重点实验室,长沙410082 [3]东莞理工学院机电工程系,东莞523808

出  处:《机械工程学报》2008年第11期93-98,104,共7页Journal of Mechanical Engineering

基  金:国家重点基础研究发展计划(973计划,2004CB719402);东莞市科研发展专项基金(2006D021)资助项目。

摘  要:从构造的角度,开展神经网络的动态结构设计研究,提出一种基于泛化的多层前向网络动态结构设计方法,编制了相应的计算程序。在该方法中,基于Ockhams RAZOR原则,从一个较小的基本网络开始,通过动态增加隐结点或隐层,综合运用网络泛化能力的多种改进方法,改进的BP算法以及快速搜索机制和全局搜索机制相结合确定学习速率、动量系数、跳跃因子和正则化系数的方法,采用网络权值的局部和全局调节方案,对多层前向网络进行动态结构设计。上述方法在凸凹弧翻边回弹预测中的应用实例表明,运用该方法设计的网络具有较好的计算精度。From the view point of construction, research on dynamic structure design of neural network is carried out and a dynamic structure design method of multilayer feedforward network (DYNSDMFN) based on generalization performance is proposed and the corresponding calculation program is worked out. Based on Ockhams RAZOR principle, DYNSDMFN starts from a basic architecture and designed structure of MFN dynamically, corresponding to given training sample set and test sample set, by means of adding new neuron of hidden layer or new hidden layer dynamically, comphrehensive application of several improving methods of generalization performance, an improved BP algorithm, the determination method of learning ratio, momentum coefficient, jumping factor and regularization coefficient adopting the combined searching mechanism in quick and global manner, the combination of local and global weight adjustment project, dynamic structure design of multilayer feedforward network is carried out The application results in the flanging springback prediction indicates that the network designed by using that method has a relative high calculation accuracy.

关 键 词:多层前向网络 拓扑结构 动态结构设计 泛化能力 回弹预测 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象