针对纯滞后系统神经网络Dahlin控制的研究  被引量:2

Research on Neural Network Dahlin Control for Dead Time System

在线阅读下载全文

作  者:文定都[1] 

机构地区:[1]湖南工业大学冶金校区电气工程系,湖南株洲412000

出  处:《自动化仪表》2008年第12期38-40,43,共4页Process Automation Instrumentation

基  金:湖南省教育厅资助科研项目(编号:07D071)

摘  要:针对传统的基于Dahlin算法的控制器在大惯性、纯滞后、时变性、非线性对象的控制效果不佳,甚至发生不稳定现象的弱点,提出了以CMAC神经网络与Dahlin算法相结合的控制方法。以CMAC神经网络作为一个前馈控制器,实现时滞系统的自适应稳定控制。仿真实验表明,这种复合控制方法保留了Dahlin算法与CMAC神经网络的各自特长,同时具备学习速度快、适应能力强的优点,具有良好的稳定性和控制效果。Aiming at the disadvantages of conventional controller based on Dahlin algorithm in controlling objects featuring large inertia, dead time, time varying and nonlinear, i. e. , harmful control effect, even unstable, the control method of combining CMAC neural network and Dahlin algorithm is stated. The CMAC neural network works as the feed forward controller to implement self-adaptive and stable control for time delay system. The experimental simulation verifies that the compound control method keeps the advantages of both Dahlin algorithm and CMAC NN, and features fast leaming speed, high capability of adaptation and excellent and stable control effects.

关 键 词:CMAC 神经网络 DAHLIN算法 前馈控制器 纯滞后系统 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象