检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《兰州理工大学学报》2008年第6期156-161,共6页Journal of Lanzhou University of Technology
摘 要:研究带跳时滞随机微分方程Euler-Maruyama方法的指数稳定性.在全局Lipschitz条件及解析解和数值解在均方有界的条件下,证明SDDEJs的指数稳定性的充要条件是Euler-Maruyama方法下构造的数值解是指数稳定性的.避免寻找Lyapunov函数的困难,将指数稳定性的等价关系推广到带跳情形.The exponential stability of differential equations with stochastic jumping time-delay was studied on the basis of Euler-Maruyama method. It was verified in the case of agreement of global Lipschitz condition and mean square bounded analytic and numeric solutions that the sufficient and necessary condition of SDDEJs exponential stability was the exponential stability of the numeric solution constructed with FulerqVIaruyama method, Thus, the difficulty was avoided in finding the Lyapunov function and the equivalent relationship of exponential stability was generalized to the case with the lumps.
关 键 词:EULER-MARUYAMA方法 均方稳定 POISSON跳 Ito积分 指数稳定性
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.190