检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学环境科学与工程系
出 处:《环境科学》1998年第1期37-40,共4页Environmental Science
基 金:国家自然科学基金
摘 要:为了研究人工神经网络预测有机化合物生物降解的性能,运用多元线性回归方法和误差反向传递人工神经网络模型以基团代码作为结构描述符,分别拟合、预测了一批含硫芳香族化合物的一级好氧生物降解速率常数.结果表明,由于神经网络自动考虑了基团间的交互作用,它对生物降解这类复杂问题有极高的求解能力,预测的均方误差为0.00102,远低于线性回归模型的预测误差0.In order to evaluate the ability of artificial neural networks to predict the biodegradability of organic compounds,the codes of function groups were employed as structural descriptors to fit and predict the pseudofirstorder aerobic biodegradation rate constants of a batch of sulfurcontaining aromatic compounds using multiple linear regression and error back propagation neural network models,respectively.The results indicated that the neural network has higher ability to solve the complex problems affected by confounding structure factors such as biodegradation process due to its ability to conclude interactions between groups automatically.The meansquare error of the network is 000102,which is much lower than that of the linear model 001591.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.202