检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州大学数学系
出 处:《兰州大学学报(自然科学版)》1998年第1期15-20,共6页Journal of Lanzhou University(Natural Sciences)
摘 要:有文通过建立适当的比较函数,把Filippov定理推广到更广义的方程x=h(y)-F(x),y=-g(x)上,讨论了极限环的存在条件.还有文运用了类似的方法,对更为广泛的方程x=Q(x,y),y=P(x)在Qy(x,y)≠0条件下进行探讨,得到了其存在极限环的充分条件.本文运用了类似的Filippov变换方法,讨论了方程x=Q(x,y),y=P(x)在Qy(x,y)变号的情形下的极限环的存在性和稳定性,得到了相应的一个充分条件.It is an important subject of ordinary differential equations to study the existence of periodic solution. When a system is autonomous, its periodic solution is a limit cycle on the phase plane. In this paper, A.F.Filippovs method is used on the more generalized system x·=Q(x,y),y·=P(x), where the sign of Q y′(x,y) is variable. By constructing appropriate comparison functions on different areas, the existence of limit cycles of the system x·=Q(x,y),y·=P(x) is discussed and then Filippovs theorem is extended. A sufficient condition of the existence of stable limit cycles is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3