检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾为鸿
机构地区:[1]抚州师范专科学校数学与计算机科学系
出 处:《西南师范大学学报(自然科学版)》1998年第1期19-24,共6页Journal of Southwest China Normal University(Natural Science Edition)
基 金:江西省自然科学基金
摘 要:对称拓扑分子格(L,η)称为可数S闭的,如果其最大元1的由可数半开元组成的覆盖都有有限子族,它们的闭包构成1的覆盖.在上述定义中,若分别将“闭包”换成“半闭包”、将“半开元”换成“强半开元”,就另外得出可数强S闭的与可数弱S闭的定义.研究了三种可数S闭性各自的等价刻划与特征性质,给出它们之间的内在联系.1°(L,η)是可数S闭的当且仅当1的每个可数正则闭覆盖都有有限子覆盖.2°在对称拓扑分子格的框架下,可数强S闭性蕴涵可数S闭性,可数S闭性蕴涵可数弱S闭性.3°在极不连通的对称拓扑分子格中,可数强S闭性,可数S闭性与可数弱S闭性等价. symmetric TML (L,η) is called countable Sclosed,it for every semiopen cover of the greatest element 1 has a finite subcollection whose closures cover 1.In above definition,if “closure” and “semiopen element” are changed with “semiclosure” and “strong semiopen element” respectively,then other definitions of countably strong and weak Sclosed are obtained respectively.It is investigated that equivalent characterization and characteristic properties of three countable Sclosedness.The connections among them are established.Main Results: 1. (L,η) is countable Sclosed iff for every countable regular closed cover of 1 has a finite subcover.2. In symmetric TML,countably strong Sclosedcountable Sclosedcountably weak Sclosed.3.In symmetric TML which is extremally disconnected,countably strong Sclosedness,countable Sclosedness,countably weak Sclosedness are equivalent to each other.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249