检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院成都计算机应用研究所,成都610041
出 处:《系统科学与数学》2009年第1期26-34,共9页Journal of Systems Science and Mathematical Sciences
基 金:国家973计划(2004CB318003)项目资助;中国科学院知识创新工程重要方向(KJCX-YW-S02)项目资助
摘 要:利用双变元对称型所构成实线性空间的特点,设计了一种特殊形式的基,基中元素是非负的.如果一个元在此基下的坐标非负,则该元自身也是非负的.于是要证明某个元非负将被归结为证明其在指定基下的坐标非负.通常坐标中的变元数,少于原对称型的变元数,从而起到了降低维数的作用.对非对称型,可通过对称化转换为对称型来处理.根据该方法编制了Maple通用程序Bidecomp.虽此方法并非完备的,但大量的应用实例表明了此种方法证明多项式型不等式的有效性.A set of special basis in which the elements are nonnegative is designed based on the feature of real linear space generated by bivariate symmetric form. The variant itself is nonnegative if its coordinates is nonnegative under the special basis designed. Thus the proof of nonnegativity of a variant is transformed into the proof of nonnegativity of coordinates corresponding to the variant in appointed basis. And decreasing dimension is successful, for the number of variates in coordinates is always less than the number of variants belonged to symmetric form. Furthermore, we are able to solve the nonegativity of a variant belonged to unsymmetric form by transforming the unsymmetric form into the symmetric form. Finally, the general program called Bidecomp is programmed according to the above method. The method is very efficient although it is incomplete.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30