基于小波分解的织物疵点检测  被引量:4

Fabric Defect Detection Based on Wavelet Decomposition

在线阅读下载全文

作  者:管声启[1] 石秀华[1] 宋玉琴[1] 

机构地区:[1]西北工业大学航海学院,陕西西安710072

出  处:《昆明理工大学学报(理工版)》2009年第1期48-51,103,共5页Journal of Kunming University of Science and Technology(Natural Science Edition)

基  金:西安市科技攻关资助项目(项目编号:GG04039)

摘  要:根据小波在奇异信号分解中的特点,提出了一种基于小波分解的疵点检测新方法.首先根据织物纹理特点,确定小波函数.其次对被检测图像进行小波变换,获得分解后的子图;根据织物纹理组织单元,把高频子图分割成若干子窗口,统计子窗口的能量标准差与均值加权求和作为提取的特征.最后通过测试图像子窗口特征与标准子窗口特征相比较,判断疵点是否存在.实验表明,该检测方法是有效的,检测正确率达到90%以上.According to the characteristics of wavelet decomposition in singular signals, an innovative method for defect detection based on wavelet decomposition is put forward. Firstly, according to fabric texture characteristics, wavelet functions are identified. Secondly, sub -images are acquired through the fabric image wavelet decomposition. High frequency sub - images are segmented into many sub - windows, in which stand deviation and average weighted sum are taken as characteristics. Lastly, the characteristics are compared with normal sub - window's characteristics to determine whether there is a defect. The experimental result confirms that the proposed method is feasible in rapid defect detection, and the detection average accuracy is over 90%.

关 键 词:小波分解 特征提取 疵点检测 织物 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象