基于模糊聚类的稳健支撑向量回归机及火焰图像处理  被引量:2

Fuzzy Clustering Based Robust SVR and Flame Image Processing

在线阅读下载全文

作  者:陈晓峰[1] 王士同[1] 曹苏群[1,2] 崔运静[3] 马培勇[4] 仇性启[3] 

机构地区:[1]江南大学信息工程学院,无锡214122 [2]淮阴工学院机械系,淮安223001 [3]中国石油大学(华东)机电工程学院,东营257061 [4]中国科学技术大学工程科学学院,合肥230026

出  处:《中国图象图形学报》2009年第3期463-470,共8页Journal of Image and Graphics

基  金:国家高技术研究发展计划(863)项目(2006AA10Z313);国家自然科学基金项目(60773206/F020106,60704047/F030304);国防应用基础研究基金项目(A1420461266);2004年教育部跨世纪优秀人才支持计划基金项目(NCET-04-0496);2005年教育部科学研究重点基金项目(105087)

摘  要:由于离群点会降低支撑向量回归机的性能,因此为了提高支撑向量回归机的图像处理性能,提出了一种具有抗离群点性能的模糊稳健支撑向量回归机(FRSVR),并首先给出了在任意代价函数下支撑向量回归机的求解方法;然后讨论了构建稳健支撑向量机的代价函数所需的性质,并在此基础上,引入了损失代价函数族;接着根据支撑向量回归机的训练误差,用模糊C均值聚类(FCM)查找离群点;最后通过迭代的方法实现了模糊稳健支撑向量回归机。为了对火焰图像进行有效处理,还将FRSVR算法应用于乳化油燃烧火焰图像处理,以去除火焰图像上的离群点。实验结果表明,FRSVR算法处理图像的性能优于ε-SVR算法和自适应SVR滤镜(ASBF),不仅能有效地查找离群点,而且可去除较大的离群点区域,还能显著的降低离群点的影响,并具有良好的泛化性能。A novel support vector regression method-FRSVR(fuzzy robust support vector regression) based on traditional ε-SVR is proposed in this paper. First, a solution for support vector regression with arbitrary cost function is given. Second the properties which a cost function should have in order to construct a robust support vector regression are discussed. Then a family of cost functions is introduced. In the training procedure of FRSVR, outliers can also be detected in terms of different training error ranges between normal examples and outliers using fuzzy c-means algorithm (FCM). Through iteration, FRSVR is obtained. Since it is based on ε-SVR, various optimization methods for epsilon support vector regression can be used to solve FRSVR. In the experimental part of the paper, FRSVR is applied to process emulsified oil combustion flame images such that outliers therein can be detected and removed, then flame shapes are accordingly segmented. Experimental results show that FRSVR performs better than ε-SVR and ASBF filter in the sense of removing outliers and enhancing the generalization ability.

关 键 词:离群点 支撑向量回归 模糊聚类 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象