检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学非线性科学研究中心,江苏镇江212013
出 处:《江苏大学学报(自然科学版)》2009年第2期213-216,共4页Journal of Jiangsu University:Natural Science Edition
基 金:国家自然科学基金资助项目(10771088);江苏大学高级人才专项基金资助项目(07JDG082);江苏省博士后基金资助项目(0801028C)
摘 要:分析一类浅水波模型即广义CH方程中对流项强度及系数对可积性和显式解结构的影响.通过Painleve分析,证明m=2时方程是可积的,并且给出其守恒量和Ham ilton结构.推广一种统一的代数求解方法,把平衡关系式的变量数增加到3个,从而获得广义CH方程更为丰富的显式解,特别是一些新型孤波解:当m=1时,方程具有移动紧孤立波解(对流项系数为负号)以及移动尖峰孤立波解(对流项系数为正号);当m=2时,可积方程具有光滑孤立波解和周期波解;当m=3时方程具有周期波解.Influence of intensity and coefficients of convections on the integrability and structure of exact solutions for one type of shallow water wave models,namely the generalized CH equation is analyzed.Through the Painleve analysis,it is proved that the equation is integrable as m=2,and conservation laws and Hamilton structure are also given.One unified algebra solution method is extended by changing the balance relationship variable number to three,and hence richer explicit solutions are obtained.Some new solitary wave solutions are: for m=1,the equation permits shifting compact solitary wave solutions when the convection coefficient is negative,and shifting peak solitary wave solutions when the convection coefficient is positive;for m=2,the equation permits the smooth solitary wave solution and the periodic wave solutions;for m=3,the equation has the periodic wave solutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200