基于二维Fisher线性鉴别分析和粒子群优化的红外图像分割(英文)  被引量:1

Infrared Image Segmentation Using Two-Dimensional Fisher Linear Optimal Discriminant Analysis and Particle Swarm Optimization

在线阅读下载全文

作  者:唐英干[1] 黄娜[1] 关新平[1] 

机构地区:[1]燕山大学工业计算机控制工程河北省重点实验室,河北秦皇岛066004

出  处:《电子器件》2009年第1期12-16,共5页Chinese Journal of Electron Devices

基  金:This work is supported by National Natural Science Foundation of China for Distinguished Young Scholars under Grant.60525303;Doctoral Foundation of Yanshan University under Grant.B243

摘  要:二维Fisher线性鉴别分析的图像分割算法,考虑了图像中目标和背景之间类间方差和类内方差在类别分离中的作用,有效地克服经典Otsu阈值法当图像中目标的面积很小(直方图上表现为峰的大小相差很大或者没有明显双峰)时产生的阈值"漂移"现象,是一种有效的图像分割方法。针对二维Fisher线性鉴别分析计算量大的特点,采用粒子群算法来搜索最优二维阈值向量。每个粒子代表一个可行的二维阈值,通过粒子群之间的协作来获得最优阈值向量。实验结果表明,所提出的方法不仅能准确地分割图像,而且计算量大大减少,达到了快速分割的目的,便于实时应用。Two-dimensional(2-D) Fisher linear optimal discriminant analysis,which considers the gray information and spatial neighbor information between pixels in the image simultaneously,overcome especially if the histogram of images in reality has no distinct sharp valleys or the valley is flat and broad,the proposed is an efficient image segmentation method.However,finding the optimal threshold vector using exhaustive searching is expensive for 2-D fisher criterion function thresholding method.In this paper,an optimization method,i.e.,particle swarm optimization(PSO) is used to find the optimal 2-D threshold vector,in which each particle represents a possible 2-D threshold vector and the best 2-D threshold is obtained through the cooperation among particles.To show the validity of the proposed method,this paper uses several infrared images to segment.Analysis and experimental results show that the proposed method can not only obtain ideal segmentation results but also decrease the computation cost reasonably,and it is suitable for real-time applications.

关 键 词:红外图像 图像分割 FISHER线性鉴别分析 粒子群优化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象