检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学信息科学与技术学院,江苏南京210016
出 处:《系统工程与电子技术》2009年第3期575-578,共4页Systems Engineering and Electronics
基 金:国家自然科学基金资助课题(60872065)
摘 要:在随机误差不服从正态分布的问题中,最小一乘估计的统计性能优于最小二乘估计;另外,最小一乘估计的稳健性更强。因此提出了基于最小一乘估计和遗传算法进行背景预测的红外弱小目标检测方法。首先,建立最小一乘准则背景预测模型,应用遗传算法求解最小一乘估计的最优值并进行背景预测;然后,由实际图像和预测图像相减得到残差图像,并采用二维指数熵图像阈值选取方法对残差图像进行分割。针对实际红外图像序列的实验结果表明:所提出的方法对弱小目标具有更高的检测概率和更好的检测结果,优于基于最小二乘背景预测的检测方法。When the random error is not subject to normal distribution, the least absolute deviation estimation is superior to the least squares estimation. In addition, the robustness of the least absolute deviation estimation is also better than that of the least squares estimation. Thus, a method of weak and small target detection in infrared image sequences is proposed based on the least absolute deviation background prediction and the genetic algorithm. Firstly, a prediction model of the background signal based on the least absolute deviation crite rion is founded. The extreme value is extracted by t sults with some real infrared image sequences show that the proposed greatly improves the detection performance of weak and small targets least squares background predication.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.209.49