检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龙磊[1,2] 陈秋双[1] 华彦宁[1] 徐亚[1] 李晨[1]
机构地区:[1]南开大学信息技术科学学院,天津300071 [2]天津港航发展研究中心,天津300461
出 处:《系统仿真学报》2009年第7期1962-1968,1973,共8页Journal of System Simulation
基 金:天津市自然科学基金资助项目(05YFJMJC01300);天津市科技发展计划资助项目(043185111-12)
摘 要:设计了求解VRPSDP的粗粒度并行遗传算法(CGPGA),其中遗传算法以最优划分法计算适应值,邻域搜索法作为变异算子,定义了群体多样性结构。并行算法以单向环作为连接拓扑,各子群体独立进行遗传操作,迁移算子用于群体间的信息交流,采用多样性替换的方法进行个体替换。论文给出了CGPGA算法在集群系统上的重复非阻塞MPI实现。对典型VRPSDP实例进行测试的结果表明:CGPGA算法在大部分实例上超过了已知最好解,未达到已知最好解的实例与已知最好解的相对误差不超过1.5%。在计算速度方面,CGPGA算法具有接近线性甚至超线性的加速比,提高了遗传算法的求解速度。A coarse-grained parallel genetic algorithm (CGPGA) was developed to solve VRPSDP, which uses an optimal splitting procedure to get the fitness value, a local search as the mutation operator The measure of population diversity was defined properly. The parallel algorithm used 1D ring as the topology, with a serial GA (SGA) running on each processor The migration operator was used to communicate between subpopulations, and the diversity replacement to replace individuals. The algorithm with the repeatedly non-blocking MPI on cluster system was implemented. The computational results carded out on VRPSDP benchmark instances indicate that the proposed CGPGA outperforms the best-known solutions in most instances, and the relative errors to the best-known solutions on the rest instances are less than 1.5%. The results also reveal that the CGPGA has linear even super linear speedup ratio, improving the computing speed of SGA significantly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188