检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周思中[1]
出 处:《系统科学与数学》2009年第4期484-489,共6页Journal of Systems Science and Mathematical Sciences
基 金:江苏省高校自然科学基础研究项目(07KJD110048);江苏科技大学青年科研(2004SL001J)基金项目;江苏省"青蓝工程"资助.
摘 要:设G是一个n阶图,a,b,m_1,m_2是非负整数且满足1≤a<b和b≥m_1.H_1和H_2是图G的两个边不交的子图且满足|E(H_1)|=m_1和|E(H_2)|=m_2.证明下列结论:若图G的联结数bind(G)>(a+b-1)(n-1)/bn-(a+b)-2(m_1+m_2)+2且n≥(b-1)(a+b-1)(a+b-2)+2b(m_1+m_2)/b(b-1),则图G有一个[a,b]-因子F满足E(H_1)■E(F)和E(H_2)∩E(F)=φ.进一步指出这个结果是最好的.Let G be a graph of order n, and let a,b, m1,m2 be nonnegative integers with 1≤a〈b and b≥m1.Let H1 and H2 be two edge-disjoint subgraphs of G with the sizes |E(H1)|=m1 and |E(H2)|=m2.In this paper, it is proved that G has an [a, b]-factor F such that E(H1)∈E(F) and E(H2)∩E(F)=φ if the binding number of G bind(G) 〉(a+b-1)(n-1)/bn-(a+b)-2(m1+m2)+2 and n≥(b-1)(a+b-1)(a+b-2)+2b(m1+m2)/b(b-1).Furthermore, it is shown thatthe result in this paper is sharp.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38