基于交叉熵方法的选择性AODE算法  被引量:1

Learning Selective AODE for Classification Based on Cross-Entropy Method

在线阅读下载全文

作  者:周传华[1,2] 王清[2,3] 赵保华[1] 韦伟[2] 

机构地区:[1]中国科学技术大学计算机系,合肥230026 [2]安徽工业大学管理科学与工程学院,马鞍山243002 [3]复旦大学计算机与信息技术系,上海200433

出  处:《系统仿真学报》2009年第10期2878-2882,2888,共6页Journal of System Simulation

基  金:安徽省教育厅重大项目资金(ZD200904);安徽省高校优秀青年人才基金(2009SQRZ075);复旦大学博士创新基金(EYH1232004)

摘  要:AODE(Averaged One-Dependence Estimators)算法是最近提出的一种典型的基于naveBayes的改进算法,并受到国际机器学习界的关注。交叉熵方法(Cross-entropy Method)是一种解决组合优化问题的全局随机搜索算法,已经成功地被应用到许多经典的NP问题中。给出了AODE算法选择性集成的理论基础,并基于交叉熵方法,提出了解决AODE算法选择性集成的CESAODE(Cross-Entropy method for Selective AODE)算法。在WEKA平台上使用UCI数据集进行的仿真实验结果表明,CESAODE算法比现有的分类算法,例如AODE等具有更好的分类性能。AODE (Averaged One-Dependence Estimators) is a recently proposed semi-naive Bayes algorithm and has attracted the attention of the machine learning community. Cross-Entropy Method is a recently proposed random search algorithm and has been successfully applied into a wide range of NP hard problem with promising result. The selective AODE problem was studied and the theoretical foundation was given to explain why model selection for AODE was useful, and CESAODE (Cross-Entropy method for Selective AODE) was proposed which could efficiently search the optimal subset over the whole one-dependence estimators of AODE. The experimental results show that the algorithm significantly outperforms the existing algorithms such as AODE in term of classification accuracy.

关 键 词:分类算法 选择性集成 AODE 交叉熵方法 M估计 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象