检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙奉昌[1] 乐恺[1] 姜泽毅[1] 张欣欣[1]
出 处:《热能动力工程》2009年第3期337-341,共5页Journal of Engineering for Thermal Energy and Power
摘 要:针对当前加热炉温度控制存在的超调量大、震荡频率大等问题,基于智能控制理论的发展,将智能控制理论中的专家控制、模糊控制和神经网络控制与PID控制相结合,设计了智能PID控制算法,分别对这几种控制算法进行了数值模拟和实验研究。结果表明,智能PID控制算法的调节效果要明显优于传统的PID控制算法,其中,模糊自整定PID控制算法和模糊免疫PID控制算法在加热炉温度控制的应用上较为可行,神经网络PID控制算法也具有很好的发展和应用潜力。In the light of such problems as a big overshoot and a high oscillation frequency etc.currently existing in the temperature control of a heating furnace,on the basis of the development of intelligent control theory and by combining the expert,fuzzy and neural network control in the above control theory with PID (Proportional-Integral-Differntial) control,intelligent PID control algorithms were designed.In addition,a numerical simulation and experimental verification were performed of those control algorithms in question.It has been found that the intelligent PID control algorithm can achieve a control effectiveness obviously superior to that of the traditional PID control algorithm.Among the control algorithms,the fuzzy self-tuning control algorithm and the immune,fuzzy PID control one are relatively feasible for the temperature control of heating furnaces.The neural network PID control algorithm has also a great potential for future development and applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171