检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔群凤[1]
机构地区:[1]武汉职业技术学院电子信息工程系,湖北武汉430074
出 处:《武汉职业技术学院学报》2009年第3期78-81,共4页Journal of Wuhan Polytechnic
摘 要:独立分量分析是一种有效的盲源分离和特征提取技术,在许多领域已获得成功应用。结合快速固定点算法和极大似然自然梯度算法的特点,提出了一种基于峭度的独立分量逐次提取梯度算法,编制了相应的计算程序,并设计仿真试验,试验结果表明,在信源满足独立分量分析的前提条件时,该算法具有较好的收敛性能,且分离效果较好。Independent component analysis is an effective technology for blind source separation and feature extraction, and has been successfully applied to a wide range of researches. Firstly, the principle and realization of independent component analysis are briefly introduced in the paper. Then we put forward a gradient algorithm for sequential extraction of independent component based on kurtosis. The algorithm integrates the merits of the fast fixed- point algorithm and the natural gradient algorithm based on maximum likelihood estimation. We compile the corresponding calculation program and conduct a simulation experiment. The results have shown that this algorithm has good convergence and separation effect when the source signals could meet with the prerequisite for independent component analysis.
关 键 词:独立分量分析 峭度 逐次提取 梯度算法 盲源分离
分 类 号:TN06[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28