检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学空间控制与惯性技术研究中心,哈尔滨150001
出 处:《中国惯性技术学报》2009年第3期360-365,共6页Journal of Chinese Inertial Technology
基 金:"十一五"国防预研项目(51309030102);"十一五"国防预研项目(51309030203)
摘 要:针对中低精度微机械陀螺静态零位输出随温度漂移严重的问题,将应用于分类的近似支持向量机(PSVM)扩展到回归分析中,提出了使用近似支持向量回归机(PSVR)进行建模和预测的方法。该方法的原始优化问题基于等式约束,可采用直接法求取最优解,利用核函数可以方便地实现线性算法的非线性化,并具有良好的泛化能力。分段和连续温度测试结果表明,与常用的最小二乘支持向量回归机(LSSVR)相比,PSVR算法简单,训练速度快,尤其在大规模数据集处理上更具优势。As the static bias of low-medium accuracy MEMS gyroscopes was greatly affected by the temperature drift, the proximal support vector machines for classification were introduced into the regression analysis, and a novel modeling and prediction method based on proximal support vector regression was presented. The primitive optimization of this method was based on the equality constraints, and the optimal solution can be obtained by direct method. Using implicit mapping via the kernel function, we can easily resolve the nonlinear regression algorithms with great generalization ability. The results of temperature drift data sets from the segmented and continuous measurements demonstrate that, compared with the least squares support vector regression, the proximal support vector regression is a simple and fast training algorithm, especially for large scale data sets.
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3