检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈艾琴[1] 刘乾[1] 朱大奇[1] CHEN Ai-qin, LIU Qian, ZHU Da-qi (Laboratory of Underwater Vehicles and Intelligent Systems, Shanghai Maritime University, Shanghai 200135, China)
机构地区:[1]上海海事大学水下机器人与智能系统实验室,上海200135
出 处:《电脑知识与技术》2009年第7期5214-5216,共3页Computer Knowledge and Technology
基 金:上海市教委课题(NO.2008099,NO.20080119)
摘 要:常规无人水下机器人推进器故障诊断中,均假设推进器处于几种固定故障模式,这与实际推进器故障情况有较大差别。该文将信息融合故障诊断技术引入推进器拥堵故障在线辨识之中,提出基于BP误差反传神经网络(Error Back Propagation Network)信息融合在线故障辨识模型,将水下机器人控制信号和故障情形下的方向偏转率作为BP神经网络融合模型输入,其输出即为反应推进器故障大小的拥堵系数,不仅提高了故障辨识精度,而且对连续不确定故障实现有效辨识。Normal state and several different fault patterns are considered in conventional thrusters fault diagnosis of unmanned underwater vehicles, the control law is designed off-line. But it is not different from actual thrusters fault situation. In this paper,information fusion fault diagnosis technology, has been the introduction of congestion thruster fault line identification, and information fusion line fault identification model based on Error Back Propagation Network has been raised. Underwater robot control signal and the direction of deflection rate in fault situations as input of BP fusion model, and the Congestion factor reaction thruster fault size is its output. This approach not only improves the accuracy of fault identification, and achieves effective identification to continuous uncertainty on failure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13