检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004 [2]中国科学院光电技术研究所,成都610209
出 处:《光电工程》2009年第7期14-17,共4页Opto-Electronic Engineering
基 金:国家863高技术资助项目
摘 要:针对光电跟踪系统惯性传感器信号特点,本文提出通过小波分析的方式确定相关Kalman滤波的模型及参数。该方法利用小波分析的优良特性,采用先将信号进行去噪处理,然后对去噪后的信号进行AR建模。根据小波去噪后的信号比较接近真实信号,将得到的观测噪声方差乘以一个小于1的系数后作为系统的过程噪声方差,从而确定模型的噪声参数。仿真实验结果表明,该方法不仅对惯性传感器的静态数据有很好的效果,而且对其动态观测数据也有良好的效果。同时,该方法不仅对光电跟踪系统有效,而且还具有一定的通用性。According to the signal characteristics of inertial sensors in optoelectronic tracking system, an improved Kalman filtering method was designed, by which the AR model of denoised signals was built up and parameters were estimated after the signals were filtered by wavelet. Because the signals filtered by wavelet is approximative to actual ones, the variance of system noises was obtained by the variance of observation noises multiplying a coefficient less than 1. Finally, the experiments about real signals of some inertial sensors verify that the algorithm is efficient and has some catholicity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70