检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹云忠[1]
机构地区:[1]四川农业大学信息与工程技术学院,四川雅安625014
出 处:《计算机工程与应用》2009年第21期218-221,共4页Computer Engineering and Applications
摘 要:单一神经网络难以对复杂模型做出准确的预测,提出了一种并联型混合神经网络模型用于对复杂的系统进行预测,该模型由径向基函数网络、BP网络和控制模块组成。控制模块用于线性映射层,将两种单一神经网络的输出结合并得到最终的输出结果。详细地给出了混合模型的预测方法:首先,利用改进算法分别训练径向基函数网络和BP网络;其次,采用自适应遗传算法优化线性映射层以获得更好的预测精度;最后,利用两个实例比较单一神经网络和提出的混合网络的预测性能。实验表明,混合神经网络在预测精度上比单一网络具有更优的性能,同时,该混合模型为复杂系统提供了一种通用的预测工具。Single neural network is difficult in performing accurate predictions for complex model.A hybrid model,which involves a radial basis function network,a multi-layer perception network with back-propagation and a control module,is proposed and used for forecasting complex system.The control module serves as a linear mapping network which combines the outputs of two neural networks to gain the final output value.The prediction methods of the hybrid model are mainly discussed:Firstly,the improved algorithm is taken to train two networks respectively and the output values are obtained;Secondly,the linear mapping network is optimized by self-adaptive genetic algorithm to gain higher prediction accuracy;Finally,this paper has carried out two experiments to compare the prediction performance of a single network and the proposed model.The experimental results show that the proposed hybrid neural network provides a superior performance in prediction accuracy than other methods and offers a common tool for complex prediction.
关 键 词:径向基函数 BP神经网络 混合网络模型 数据预测 线性映射
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222