不确定性的非线性系统神经网络L_2增益控制  被引量:1

Neural network L_2 gain controller for a nonlinear system with uncertainty

在线阅读下载全文

作  者:田思庆[1] 于志刚[2] 宋申民[2] 

机构地区:[1]佳木斯大学信息电子学院,黑龙江佳木斯154007 [2]哈尔滨工业大学航天学院,黑龙江哈尔滨150001

出  处:《哈尔滨工程大学学报》2009年第7期829-833,共5页Journal of Harbin Engineering University

基  金:国家自然科学基金资助项目(60475027);国家863计划资助项目(2006AA704314)

摘  要:针对具有不确定性的仿射非线性系统,设计了神经网络L2增益控制器,使得控制系统为有限增益L2稳定的.利用Fourier神经网络的函数拟合能力,给出了满足HJI不等式的存储函数的一般结构,并利用遗传算法对神经网络权系数进行优化,设计相应的神经网络L2增益抗干扰控制器,使得闭环系统满足相应的L2性能准则.对于L2输入信号,要求控制系统设计为使得输入-输出映射为有限增益L2稳定的并有尽量小的L2增益参数.针对搅拌式化学反应器控制实例,通过数字仿真,证明此方法能够达到预期的L2性能准则.A neural network controller with L2-gain was developed for an affine nonlinear system with parameter uncertainty. The controller stabilizes the closed-loop control system with a finite L2-gain. The general structure of the storage function was formulated based on a Fourier neural network system's fitting capacity, which was satisfied by a Hamihonian-Jacobi inequality (HJI). Moreover, by employing the optimization of a genetic algorithm to the weighting of the neural network system, the neural network system with its anti-disturbance system was able to meet the criteria of L2-gain performance. For an L2-gain input signal, the closed-loop control system needs to stabilize finite L2 gain to input-output mapping and have the parameters of L2 gain as small as possible. In a stirred-tank chemical reactor control example, simulation results demonstrated that the proposed method is feasible and can meet the criteria of L2-gain performance.

关 键 词:神经网络控制 L2增益 HJI不等式 非线性系统 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象