检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京市环境保护局,北京100048 [2]北京交通大学交通运输学院,北京100044
出 处:《系统工程理论与实践》2009年第8期177-184,共8页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(70801004);973计划(2006CB705500)
摘 要:分别给出了动态交通配流(DTA)理论中与瞬时动态用户最优及理想动态用户最优条件等价的两个不等式问题,其中不等式中采用针对迄节点的路段变量,在符合现实中人们择路行为的同时为用户提供较为全面地诱导信息.在此基础上进一步分析了该不等式作为动态用户最优条件的等价性约束在具体相关交通问题中的应用.将该不等式问题作为等价性约束条件放到实际交通问题的模型当中,为动态交通分配理论的应用研究提供了新方法;该不等式为DUO模型提供了一种计算最小路径阻抗的方法,以及在求解模型时可以将其作为验证模型解是否满足DUO条件的算法收敛准则.This paper develops two inequality problems of dynamic traffic assignment. (DTA) problem, which follow the instantaneous and ideal dynamic user optimal(DUO) principle respectively. Different with some traditional studies, in our inequality problems, the variables and the shortest routes are all towards the destinations, which describe travelers' route choice psychology more exactly. Based on the above, we analyze the applications of these inequality problems as the equivalent constraints of the DUO principle in formulating the relative practical problems. By drawing on these inequality problems to practical problems, we are able to formulate the DTA model as inequality constraints, which can make a practical problem be stated as a single level mathematical programming, therefore provide a new method for the DTA application. Furthermore, in some DUO models such as the Ⅵ models, the inequalities can provide a method to calculate the minimal route time precisely. Furthermore, in solution algorithm~ we may adopt the inequalities as the stop criterion to validate whether the solution satisfies the DUO conditions.
关 键 词:动态交通配流 动态用户最优状态 不等式约束 求解算法
分 类 号:U491.112[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.138.59