检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《河南工业大学学报(自然科学版)》2009年第4期65-67,共3页Journal of Henan University of Technology:Natural Science Edition
基 金:河南省教育厅自然科学研究项目(2007180047)
摘 要:利用神经网络和蛋白质全序列对蛋白质结构类进行了预测.按照蛋白质序列的长度,分别从508个蛋白质中选择244个蛋白质构建了3个数据集,3个数据集中蛋白质序列的长度变化范围分别为50,100和150个氨基酸.3个数据集的自检结果均为100%.数据集的留一检测结果分别为97.13%,95.90%和95.49%.3个数据集中最好的10倍交叉检验结果为82.38%.结果表明,数据集的序列长度变化范围对预测准确率有很大影响,序列长度变化范围越大准确率越低.The whole protein sequence and a neural network were used to predict protein structural classes. 244 proteins were selected from 508 proteins to respectively construct three datasets according to the length of the protein sequences, wherein the length change ranges of protein sequences in the three datasets were 50, 100 and 150 amino acids, respectively. The self-consistence accuracies of all three datasets are 100% , and the jack - knife test accuracies are 97.13% , 95.90% and 95.49% for the above datasets respectively. The best accuracy of 10-fold cross validation test for three datasets is 82.38%. The results showed that the sequence length range of three datasets plays an important role in the accuracy prediction, and the accuracy is lower when the sequence length range becomes larger.
分 类 号:TS201[轻工技术与工程—食品科学] O629.73[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28