检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔文彬[1] 张跃文[1] 吴桂涛[1] 孙培廷[1]
机构地区:[1]大连海事大学轮机工程学院,辽宁大连116026
出 处:《哈尔滨工程大学学报》2009年第8期935-939,共5页Journal of Harbin Engineering University
基 金:国家科技支撑计划课题基金资助项目(2006BAG01A05)
摘 要:为了满足公司对于远洋船舶更加有效监控的要求,应用BP神经网络对监控系统加以改进,使船舶远程监控系统发出预警信号,并能在船舶上报警.相应参数识别码第一时间到达岸上公司,岸上公司可以在最佳时间协助船舶对设备进行维修.BP神经网络在远程监控系统的应用分析过程中,以6缸柴油主机排气温度变化趋势为模型,利用BP神经网络良好的学习特性,建立了排气温度变化的持续升高预警模型及其他非预警模型.模拟结论经验证表明,模拟结果与样本之间的误差小于5%,能够准确判断故障趋势并能预报警,改进了远洋船舶的远程故障监测系统.In order to satisfy the need for remote monitoring of ocean-going ships by more effective methods, back propagation (BP) neural networks were applied to improve existing monitoring systems by anticipating failure and so outputting warning signals instead of failure signals. During this process, the alarm apparatus on board could be actuated while relevant failure identification codes are sent to company management ashore. Subsequently, the best method to solve the problem could be worked out between the ship's crew and engineers ashore. To analyze the application of BP neural networks to remote surveillance, changing trends in the exhaust temperature of a six cylinder main diesel engine were simulated. Making use of the learning ability of BP neural networks, a warning model was proposed for when continually rising exhaust temperature potentially leads to engine failure. Five more non-warning models were established for other conditions. The errors between the samples and the results simulated by BP neural networks were smaller than 5% , consequently BP neural networks can judge the trend of failure and improve monitoring systems by implementing failure prediction functions.
关 键 词:远洋船舶远程监控 参数识别码 BP神经网络 排气温度
分 类 号:U672[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.132.215.146