二阶微分系统奇异正定超线性周期边值问题的多重正解  

Multiplicity of Positive Solutions to Singular Positone Superlinear Second-order Periodic Boundary Value Problems for Second-order Differential Systems

在线阅读下载全文

作  者:胡卫敏[1] 

机构地区:[1]伊犁师范学院数学系应用数学研究所,新疆伊宁835000

出  处:《数学的实践与认识》2009年第17期170-178,共9页Mathematics in Practice and Theory

基  金:国家自然科学基金(10571021);新疆维吾尔自治区高校科研计划科学研究重点资助项目(XJEDU2008I35)

摘  要:主要研究了二阶微分系统具有奇异正定超线性周期边值问题多重正解的存在性问题,利用Leray-Schauder抉择定理和锥不动点定理给出了奇异正定超线性周期边值问题-(p(t)x′)′+q1(t)x=f1(t,x,y),t∈I=[0,1]-(p(t)y′)′+q2(t)y=f2(t,x,y)x(0)=x(1),x[1](0)=x[1](1)y(0)=y(1),y[1](0)=y[1](1)(1.1)的多重正解的存在性,其中非线性项fi(t,x,y)(i=1,2)在x=∞,y=∞点处超线性,在(x,y)=(0,0)处具有奇性.这里定义x[1](t)=p(t)x′(t),y[1](t)=p(t)y′(t)为准导数,其中系数p(t),qi(t)(i=1,2)是定义在[0,1]上的可测函数,且p(t)>0,qi(t)>0(i=1,2),a.e[0,1],fi(t,x,y)∈C(I×R×R,R+),R+=(0,+∞).We are devoted to establish the multiplicity of positive solutions to positone superlinear singular equations for second-order differential systems with periodic boundary conditions {-(p(t)x′)′+q(t)x=fn(t,x(t))+q(t)/n,0≤t≤1 x(0)=x(1),x(0)=x(1) It is proved that such a problem has at least two positive solutions under our reasonable conditions. Our nonlinearity fi(t,x,y)(i = 1,2) may be singular in (a',y) -- (0,0) and superlinear at x=∞,y = ∞, where x(t) = p(t)x′(t),y(t) = p(t)y′(t) are quasi derivative and p(t) ,qi(t)(i = 1,2) in [0,1] measurable functions, p(t) 〉 0,qi(t) 〉 0(i = 1,2), a.e [0,1],f,(t,x,y) ∈ C(I × R × R,R^+ ),R^+ = (0, + ∞). The proof relies on a nonlinear alternative of Leray-Schauder type and on Krasnoselskii fixed point theorem on compression and expansion of cones.

关 键 词:多重正解 奇异 超线性 周期边值问题 锥不动点定理 Leray—Schauder抉择定理 

分 类 号:O175.8[理学—数学] O175.14[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象