一种新的火炮初速下降量预测模型  被引量:6

A New Prediction Model of Decreasing Quantity of Gun Muzzle Velocity

在线阅读下载全文

作  者:孔国杰[1] 张培林[2] 徐龙堂[1] 吴烽[1] 

机构地区:[1]北京特种车辆研究所,北京100072 [2]军械工程学院,石家庄050003

出  处:《弹道学报》2009年第3期65-68,共4页Journal of Ballistics

摘  要:为准确地评定火炮剩余寿命,通过研究火炮内膛径向磨损量和初速下降量的相关关系,提出了基于最小二乘支持向量机的火炮特性模型,引入量子粒子群算法进行模型反演分析,确定最优参数,建立了火炮剩余寿命评定模型.对实弹射击测得的25组试样的实例应用分析表明,预测模型相对误差在±5%以下,显示了最小二乘支持向量机是一种较为有效的非线性建模方法,量子粒子群算法进行模型参数优化能够保证全局最优.验证结果表明,模型的精度较高,有一定的实用价值.To evaluate the remaining life of a gun accurately, the relation between gun bore's radial wear and the decreasing quantity of muzzle velocity were researched, then a characteristic model was suggested using the least square support vector machine method. Furthermore, the quantum-behaved particle swarm optimization algorithm was introduced to carry out the model inverse analysis so as to determine the optimal parameters. A real sample application analysis of 25 groups from service practice indicates that the least square support vector machine is a kind of effective non-linear model method, and that the quantum-behaved particle swarm algorithm to optimize model parameters is able to guarantee the whole optimization, the relative error of prediction model is within ±5%. The testing results show that the model is of high accuracy and practical in use.

关 键 词:炮膛 径向磨损 初速 最小二乘支持向量机 量子粒子群算法 

分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象