检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂高琴[1]
出 处:《数学理论与应用》2009年第3期11-15,共5页Mathematical Theory and Applications
基 金:Supportey by the project of Capital University of Economics and Business (2009XJ014)
摘 要:本文考虑了一个风险模型的罚金折现期望函数,在此模型中,保费的收取率随索赔强度而变化,索赔到达服从COX过程,并且通过添加扩散过程来描述随机因素的影响。利用后向差分法,得到了罚金折现期望值所满足的微和分方程。当索赔强度过程为n状态的Markov过程时,通过Laplace变换,求解了该方程。In this paper, we consider the expected discounted penalty function of a risk model with a premium rate which varies according to the intensity of claims. The occurrence of claims is described by a Cox process and the influence of stochastic factors is consieered by adding a diffusion process in the model. The integro - differential equation for the expected value of discounted penalty is derived by the backward differential argument.Further, we solve the equation when the intensity process is a homogeneons n - state Markov process by Laplace transforms.
关 键 词:罚金折现期望 COX过程 风险过程 函数 保费 LAPLACE变换 MARKOV过程 干扰
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.73.179