检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京四通智能交通系统集成有限公司,北京100081 [2]北京交通发展研究中心,北京100055
出 处:《交通运输系统工程与信息》2009年第5期166-170,共5页Journal of Transportation Systems Engineering and Information Technology
基 金:国家863项目课题(2007AA11Z220;2007AA11Z212);北京市科学技术委员会项目(D07050600440704)
摘 要:交通流时间序列中由于数据采集设备、通讯故障等原因会出现随机扰动,这些扰动对交通特性分析及交通预测的准确性会造成一定影响,因此有必要对交通流原始数据进行滤波处理.小波分析是一种应用比较广泛的滤波方法,但在交通方面应用较少.本文首先对浮动车噪声产生的原因进行分析,然后对小波分析方法进行介绍,确定了滤波评价指标.为便于对滤波效果比较,本文将RTMS系统采集的数据作为真值,选择北京市内多条快速路路段在不同时段进行实验,对比原始数据与滤波处理后的数据与RTMS的相似性及均方误差,表明滤波效果明显.In the traffic flow time series, there are usually some random components which affect the accu- racy of traffic character analysis and traffic forecasting owing to the breakdown of data collection equipment and communication. Thus, it is necessary to make the traffic flow raw data filtered. Wavelet analysis is widely used for signal de-nosing and has net been used in traffic research yet. This paper first introduces the occurrence of floating car' s noise and wavelet analysis, and then selects the filtering evaluation indexes. For the purpose of filtering effectiveness comparison, urban expressways of Beijing in different times are tested and data collected from RTMS as the real data. By the indexes comparison of similarity and mean square er- ror, results and analysis of examples are provided to illustrate the advantage of this approach.
关 键 词:浮动车 小波阈值去噪 均方误差 相关系数 信噪比
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254