检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2009年第12期3352-3353,3356,共3页journal of Computer Applications
摘 要:小样本问题的存在使得类内离散度矩阵为奇异阵,因此求解线性判别分析(LDA)算法的广义特征方程存在病态奇异问题。为解决此问题,在已有算法的基础上,引入镜像图像来扩大样本容量,并采用Sw零空间的方法求得Fisher准则函数的最优解。通过在ORL和Yale标准人脸库上的实验结果表明,人脸识别效果优于传统LDA方法、独立成分分析(ICA)方法以及二维对称主成分分析(2DSPCA)方法。Because the Small Sample Size (SSS) problem usually leads to singularity of the within-class scatter matrix, there will be an ill-posed problem in solving the generalized character equation. An improved algorithm based on former ones was proposed. It introduced mirror image to enlarge sample capacity and adopted the method of the null space of the withinclass scatter matrix Sw to get the best solution of Fisher criterion. Experimental results on ORL face database and Yale face database show that the proposed algorithm is more effective than traditional Linear Discriminant Analysis (LDA), Independent Components Analysis (ICA) and 2-Dimensional Symmetric Principal Component Analysis (2DSPCA).
关 键 词:线性判别分析 小样本问题 镜像图像 零空间 类间离散度 类内离散度
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.97.68