检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《江苏电机工程》2009年第6期68-70,共3页Jiangsu Electrical Engineering
摘 要:针对RBF神经网络的不足以及传统遗传算法的特点,采用浮点数编码的自适应遗传算法(AGA)作为RBF神经网络的学习算法.来确定RBF神经网络的隐含层的中心参数和宽度参数,形成AGA—RBF网络来进行负荷预测,并通过实例验证,该方法与RBF神经网络相比,能有效地提高预测精度和改善网络性能。In view of the insufficiency of the RBF neural network and the characteristic of the tradition genetic algorithm, the adaptive genetic algorithm encoded by floating-point numbers is used as a learning algorithm for RBF neural network to determine the central parameters and the width parameters of the hidden layers. The AGA-RBF neural network is used for short term load forecasting. The results of a practical example demonstrate that the AGA-RBF neural network can effectively improve the forecast accuracy and improve the network performance compared with the RBF neural network.
关 键 词:短期电力负荷预测 RBF神经网络 自适应遗传算法
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3