检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁斌梅[1] 曾雪兰[1] 梁美莲[1] 韦琳娜[1]
机构地区:[1]广西大学数学与信息科学学院,广西南宁530004
出 处:《广西大学学报(自然科学版)》2009年第5期635-639,共5页Journal of Guangxi University(Natural Science Edition)
基 金:广西自然科学基金(桂科自0991027)
摘 要:预测高等教育投资供给规模,对于制定高等教育发展规划,确定高等教育发展规模十分必要。高等教育投资供给是一个非线性系统,而神经网络对非线性系统处理效果较好。为了改善预测性能,将神经网络训练算法进行改进。论文分析研究了L-M算法原理,将其用于高教投资供给规模的预测中,并对整个预测过程进行优化。实验结果表明,基于优化L-M算法的高等教育投资供给规模预测模型收敛速度快,泛化能力更优。It is necessary to predict the investment supply scale to formulate the development program and determine the scale for higher education of China. Higher education investment supply is a non-linear system, and a good result can be achieved with a neural network. In order to increase the prediction performance ,the training algorithm of neural network was improved. The principle of the Levengerg-Marquardt(L-M) algorithm was studied and analyzed in this paper. The L-M algorithm Was used to predict the investment supply scale of higher education, and the entire prediction process was optimized. Experimental results indicated that the L-M optimization algorithm based investment supply scale prediction model in higher education showed faster converging speed and higer generalization ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158