检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学自动化学院,湖北武汉430070
出 处:《武汉理工大学学报(信息与管理工程版)》2009年第6期917-921,共5页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:教育部博士点基金资助项目(20060497017)
摘 要:由于RFID读取器对标签的距离不可知,基于RFID的定位会产生固有误差。为了减小RFID定位系统的固有误差,研究了移动机器人融合RFID、超声波、电子罗盘和里程计自定位的方法,通过扩展卡尔曼滤波(extended Kalman filter,EKF)解决RFID定位在位姿更新之间的误差累积,提高定位的性能。通过Matlab仿真,试验结果表明该算法可行且有效。RFID has been used to the robot position system with its capability of storing location and environment information, convenience of accessing to the information and its strong adaptability to the environment change. Because RFID reader could not get label's distance certainly ,RFID position system always causes inherent error. In order to reduce the inherent error of the system ,a self - localization method of mobile - robot combined with RFID, ultrasonic, electronic compass and speedometer was investigated. Error accumulation during RFID position changing was eliminated by extended Kalman filter. The method could therefore lower the position error and increase the performance of traditional RFID position. With Matlab simulation, the test results verified feasibility and validity of this arithmetic.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117