检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《黑龙江大学自然科学学报》2009年第6期732-737,共6页Journal of Natural Science of Heilongjiang University
摘 要:给出一类带有弱耗散项的线性波动方程的Cauchy问题的解在Sobolev空间中的衰减估计,引入一个同时体现解的能量估计及解的衰减性的函数空间作为迭代的基本空间,同时建立了一个反映基本空间性质的映射,利用整体迭代法和压缩映射原理,在小初值情形下得出其半线性波动方程右端的非线性项F在满足一定条件的情况下,其Cauchy问题解的存在唯一性及解在t→+∞时的衰减性。The decay estimates for the solution in the Soblev space to the Cauchy problem for the wave equation with weakly dissipative term is given. A basic space which can exhibit the energy estimates and decay estimates of the solution is introduced, at the same time, a mapping reflecting characteristics of the space is set up. Then, by glob- al iterative method and contracting mapping principle, the existence, uniqueness and decay estimates as t→+∞ for the solution to the Cauchy problem for the semi-linear wave equations with weakly dissipative term was proved with small initial data and under some conditions on nonlinear term F.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30