检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海理工大学学报》2009年第6期601-604,608,共5页Journal of University of Shanghai For Science and Technology
基 金:国家自然科学基金资助项目(60573058);国家自然科学基金资助项目(60375002)
摘 要:针对人耳图像自身的特点并通过对现有方法的研究,提出了一种先利用LDA/GSVD算法对样本图像进行特征提取,然后运用SVM分类器对样本向量进行分类的人耳识别方法.此外,还对线性判别分析、广义奇异值分解和支持向量机的相关内容做了简要介绍.实验表明,LDA/GSVD很好地解决了在高维、小样本的情况下,使用Fisher线性鉴别分析的特征提取方法存在的病态奇异问题,把它与支持向量机有机地结合起来,构成了一种有效的人耳识别新方法.A new ear recognition method was proposed which utilizes the technique of LDA/GSVD to reduce the ear images' dimensions and takes the support vector machines as classifier. The experimental results about the USTB-77 ear database demonstrate that the new method can overcome the small sample size (SSS) problem,which usually leads to the ill-posed problem in Fisher linear discriminant analysis (FLDA). With the method proposed, good acuracy can be achieved.
关 键 词:人耳识别 线性判别分析 广义奇异值分解 支持向量机
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222