检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓华[1]
机构地区:[1]南京航空学院数理力学系
出 处:《南京航空学院学报》1990年第4期43-53,共11页
基 金:航空科学基金
摘 要:本文提出了计算非线性双曲型守恒律弱解的一类新的二步二阶精度有限差分格式,这类高精度非线性差分格式的构造应用了三点单调差分格式的数值通量和通量限制器。文章证明,在拟CFL条件限制下,格式为总变差衰减差分格式(TVD格式),因此不发生常用的诸如二步二阶Lax-Wendroff格式、Maccomark格式和其他古典二阶格式计算不连续解时在其周围出现的剧烈振荡现象。 为了减少Roe推广技术引起的计算复杂性,文中我们基于Davis,S.F.的思想,使用了Rusanov数值通量,把标量差分格式推广到方程组,构造了求解双曲型守恒律方程组的新的预测-修正格式,较之其他一般的预测-修正格式而言,仅增加了很少的计算复杂性,初步的数值试验表明,本文提出的格式无振荡和具有极好的激波分辨率。In this paper, a new class of explicit, two-step, second-order accurate, finite difference schemes for the computation of weak solutions of nonlinear hyperbolic conservation laws are presented. These highly accurate and nonlinear schemes are constructed by applying the numerical flux of three point monotonic schemes and the flux limiters. These new schems are total-variation-diminishing (TVD) under the the CFL-like restrictions, hence do not imply spurious oscillations, such as those generated by the two-step Lax-Wendroff scheme, the Maccom-ark scheme and other classical second-order accurate schemes near discontinuities of the solutions.In order to decrease the complexity of the computational algorithms, which are generated by Roe extended technique, we extend the scalar difference schemes to systems based on the thought from Davis,S.F.and using Rusanov numerical flux. A new class of predicter-corrector difference schemes for hyperbolic conservation laws, which are only slightly more complex than standard predictor-corrector finite difference schemes, are constructed. Preliminary numerical results obtained show that these schemes are nonoscillatory and have good shock resolution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117